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Geometry of high-lying eigenfunctions in a plane billiard 
system having mixed-type classical dynamics 

Baowen Lit and Marko Robnikf 
Center for Applied Mathemtics and Theoretical Physics, University of Maribor, Kcekova 2, 
SLO-62000 Maribor. Slovenia 

Received 14 October 1994, in final form 8 F e b N q  1995 

Abstract. In this paper we study the geomeuical properties of the high-lying eigenfunctions 
(200000 and above) which are deep in the semiclassical regime. The system we are analysing 
is the billiard system inside the region defined by the quadratic (complex) ~ n f o m a l  map 
w = z + hzz of the unit disc IzI < 1 as introduced by Robnik (1983). with the shape parameter 
value A = 0.15, so that the billiard is still convex and s has m-type classical dynamics, 
where regular and irregular regions of classical motion coexist in the classical phase space. 
By inspecting io0 and by showing 36 consecutive numerically calculated eigenfunctions we 
reach the following conciusions: (i) Percival's (1973) conjectured classification in regular and 
irregular states works well: the mixed-type states 'living' on regular and irregular regions 
disappear in the semiclassical limit. (ii) "he irregular (chaotic) states can be smngly localized 
due to the slow classical diffusion. but become fnUy extended in the semiclassical limit when the 
break time becomes sufficiently large with respect to the classical diffusion time. (iii) Almost all 
mtes can be cleirly associated with some relevant classical object such as the invariant toms, 
CanlONS or periodic orbits. This paper U largely qualitative but deep in the semiclassical limit 
and as such it is a prelude to ow next paper which is quantitative and numerically massive but 
at about ten times lower energies. 

1. Introduction 

The stationary problem in quantum chaos comprises the statistical properties of energy 
spectra, the statistical properties of the matrix elements of other observables, and of 
geometric structure (morphology) of the eigenfunctions and their statistics. Some recent 
reviews are in Gutmiller's book (1990), Giannoni eral(1991), Casati et al(l993), and also 
in Bemy (1983). As for the energy spectra we have massive numerical and experimental 
evidence for the existence of universality classes of spectral fluctuations described, for 
example, in Robnik (1994), supplemented by heuristic and intuitive arguments as well as 
more rigorous approaches based on applying the trace formulae, e.g. in Beny (1985) and 
especially in recent works by Steiner (1994), and by Aurich et al (1994). In performing 
that kind of analysis the goodness of semiclassical approximations still has to be carefully 
assessed, although Prosen and Robnik (1993a) demonstrate that semiclassics will correctly 
describe the statistical measures especially at large energy ranges even if it fails to predict the 
individual energy levels. These latter works deal with completely chaotic systems (ergodic, 
mixing and having positive K-entropy) whilst the situation in generic KAM-like systems 
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with mixed classical dynamics is much more complicated but nevertheless almost entirely 
understood in the recent works (Prosen and Robnik 1994a,b). 

The shucture and the statistical properties of the eigenfunctions are not so well 
understood, especially in the transition region of mixed classical dynamics, which is the 
subject of the present work, whereas in the two extreme cases of complete integrability 
on one side, and the complete ergodicity on the other side, much more is known. In our 
recent paper (Li and Rohnik 1994a, henceforth referred to as LR) we have analysed the high- 
lying eigenfunctions in the completely ergodic regime and confirmed some major theoretical 
predictions. 

In order to understand the wavefunctions especially in the semiclassical limit it 
is intuitively very appealing to use the so-called principle of uniform semiclassical 
condensation (PUSC) of the Wigner functions (of the eigenstates) which is implicit in Beny 
(1977a). Robnik (1988), and was used in LR. As f i  + 0 we assume that the Wigner function 
of a given eigenstate uniformly (ergodically) condenses on the classical invariant object on 
which the classical motion is ergodic and which supports the underlying quantal state. Such 
an object can be, for example, an invariant torus, a chaotic region as a proper subset of the 
energy surface, or the entire energy sugace if the system has ergodic dynamics there. 

In classically integrable systems the eigenfunctions possess a lot of ordered structure 
globally and locally. Applying PUSC the average probability density in the configuration 
space is seen to be determined by the projection of the corresponding quantized invariant 
torus onto the configuration space, which implies the global order. Moreover, the local 
structure is implied by the fact that the wavefunction in the semiclassical limit is locally a 
superposition of a finite number of plane waves (with the same wavenumber as determined 
by the classical momentum). 

In the opposite extreme of a classically ergodic system PUSC predicts that the average 
probability density is determined by the microcanonical Wigner function (Shnirelman 1979, 
Berry 1977a, Voros 1979). Its local structure is spanned by the superposition of infinitely 
many plane waves with random phases and equal wavenumber. The random phases might be 
justified by the classical ergodicity and this assumption, originally due to Berry (1977b), is 
a good starting approximation which locally immediately predicts the Gaussian randomness 
for the probability amplitude distribution. One major surprise in this research was Heller’s 
discovery (1984) of scars of unstable classical periodic orbits in classically ergodic systems. 
The scar phenomenon is, of course, a consequence of subtle correlations in the quantal 
phases. This has been analysed and discussed by Bogomolny (1988) and Beny (1989) in 
the context of the Gutzwiller periodic orbit theory. The insufficiency of the single-periodic- 
orbit theory of scars has been discussed by Prosen and Robnik (1993b) in a study of the 
transition region between integrability and chaos. In the latter work Prosen and Robnik have 
emphasized the incompleteness of the current semiclassical approximations (Gutzwiller’s 
method and torus quantization method)in describing the individual eigenstates. Their failure 
to predict the individual energy levels has been demonstrated in Prosen and Robnik (1993a), 
see also Boasman (1994) and Szeredi et a1 (1994) for discussions and related results. See 
also Provost and Baranger (1993). 

In the generic case of a KAM-like system with mixed classical dynamics the application 
of PUSC is again very useful and has a great qualitative predictive power. Here the states can 
be classified as either regular (they ‘live’ on a quantized invariant torus) or irregular (they 
‘live’ on a chaotic invariant region), quite in agreement with Percival’s (1973) speculative 
prediction, which has been recently carefully re-analysed by Prosen and Robnik (1994a). 
In this case Pusc implies asymptotic (fi + 0) statistical independence of level series 
(subsequences) associated with different regular and irregular components. This picture 
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has been used by Berry and Robnik (1984) to deduce the resulting energy'level statistics in 
such generic Hamilton systems with mixed classical dynamics, especially the level spacing 
distribution. In recent work Prosen and Robnik (1994a,b) have numerically coniirmed 
the applicability of the Berry-Robnik theory as the asymptotically exact theory and also 
explained the Brody-like behaviour (as discovered and described in Prosen and Robnik 
(1993~)) before reaching the far semiclassical limit. 

In our present paper, which is an extensive, systematic and numerically massive work, 
we try to phenomenologically classify the variety of eigenstates in the KAM-like regime 
of mixed classical dynamics. We do so in sections 3 and 4 by a survey of about 100 
mostly consecutive eigenfunctions of even parity which start at about the lDooOOth state, 
of which we  show and discuss a block of 36 consecutive states in configuration and in 
phase space in figures 2-4. In the subsequent sections we shall illustrate, discuss and 
confirm the theoretical pictures outlined above. The main objective of the present paper is 
to perform clear classification of eigenstates at the qualitative level but conceptually precise 
and therefore as high as possible in the semiclassical limit, so that it can serve as a prelude 
to our next paper (Li and Robnik 1994c,d) where we perform an extensive and careful 
quantitative analysis of 4000 consecutive eigenstates' (no missing states) but at ten times 
lower energies. 

2. The billiard system and the numerical technique 

The domain BA (in w-plane) of our 2D billiard system is defined by the complex quadratic 
conformal map of the unit disc (in the z-plane) onto the complex w-plane, namely 

BA = (wlw = Z f hZ2, IZI < 1) (1) 
as introduced by Robnik (1983,1984) and further studied by Prosen and Robnik (1993c, 
1994b). See also Hayli er al (1987), Bruus and Stone (1994). Stone and Bruus (1993% b) 
and Frisk (1990). (Most people in the field call this system a Robnik billiard, or the Robnik 
model.) As the shape parameter A changes from 0 to 4 this system goes from the integrable 
case of the circular billiard h = 0 continuously through a KAM-like regime 0 < A < a to 
an almost ergodic regime at larger h, becoming rigorously ergodic at least at h = 4, where 
a cusp singularity appears at the boundary point 2 = -1, mapped onto w = -1 +A, where 
the mapping w = w(z) is then no longer conformal, sin& dw/dz = 0 there. -Because the 
boundary is sufficiently smooth, in fact analytic for all 0 < A < 4, the KAM theorem applies 
provided the boundary is convex. If the boundary is not convex but still analytic the KAM 
theory does not apply because the bouncing map (Poincart map) is not continuous in such 
a billiard. At 0 6 h < $ the boundary is convex with positive curvature everywhere and 
therefore the Lazutkin-like caustics and invariant tori (of boundary glancing orbits) exist, 
in agreement with the KAM theorem (Lazutkin 1991, 1981). If the smooth boundary of 
a convex plane billiard has a point of zero curvature, then it has been proven by Mather 
(1982, 1988) that the Lazutkin caustics and the associated invariant ton do not exist. In our 
billiard this happens at h = $ for z = -1, i.e. w = -1 + A .  Therefore, at A 2 $ the billiard 
was speculated (based on the applicability of the Mather theorem and non-applicability of 
the KAM-theorem and on numerical evidence in Robnik (1983)) to become ergodic, which 
has been disproved by Hayli el al(1987). Close to A 2 a there are still some stable periodic 
orbits surrounded by very tiny stability islands. On the other hand, for h = 4 (the cardiod 
billiard, having the above-mentioned cusp singularity) the ergodicity and mixing have been 
rigorously proved by Markarian (1993). See also Wojtkowski (1986). Nevertheless, at 
large values of A, say A = 0.375 (which we studied in LR) the numerical evidence does not 
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exclude the possibility of rigorous ergodicity: if there are some tiny regions of stability, 
then they must be so small that they cannot be detected at large scales, as demonstrated in 
Li and Robnik (1994b), where we also show that the ergodicity may be expected for all 
h > 0.2775. If there is some very tiny stability island (in the bounce map), then its relative 
area must be smaller than 5 x 

As in LR we want to calculate and analyse the high-lying states for our billiard as high 
as the 100000th state of even parity (which means the 200000th state when counting both 
parities), but this time in the transitional regime of mixed-type classical dynamics such as 
exemplified by our billiard at h = 0.15. In order to achieve this goal we have to use a 
sophisticated and powerful numerical technique and the best possible computer. We have 
used the Convex C3860 supercomputer and the successful method to reach our goal is our 
implementation of the Heller’s (1991) plane-wave decomposition method described in detail 
in LR. While the reader is referred to LR for all technical details we should reassure him or 
her that many and all possible tests of numerical accuracy have been performed. The energy 
levels are accurate within at least 1/1000 of the mean level spacingt, and the eigenfunctions 
are accurate within at least 1/1000 of the average (modulus of the) probability amplitude 
l / a ,  where A = R ( I +  2h2) is the &ea of the billiard. 

We have calculated more than 100 mostly consecutive even parity eigenfunctions starting 
from the Weyl index 100000. By Weyl index we mean the estimated counting index of even 
parity states which, as a function of energy, is obtained by applying the Weyl formula with 
perimeter and curvature corrections; see equation (4) in our previous paper LR. Although our 
method allows us to accurately calculate some high-lying states it does not guarantee-unlike 
the diagonalization techniques-that we have collected all the states within a given energy 
interval. In fact, typically we do miss some states, especially pairs of almost degenerate 
states, so that even after many runs and careful checks the fraction of missing levels can 
he as high as 8%. Therefore this method is certainly not suitable for performing, for 
example, reliable level statistics, but it, nevertheless, makes it possible to watch and analyse 
some high states deep in the semiclassical limit. In this regard it is complementary to the 
conformal mapping diagonalization technique introduced by Robnik (1984) and later used 
by Berry and Robnik (1986), Prosen and Robnik (1993b, 1994b) and by many others. In 
fact we have checked the two methods against each other by verifying the accuracy of 
the energy levels as high as 10000 where the double precision (16 digits) of the machine 
was established for not too large h. (It is our definite experience that the numerical effort 
to calculate a quantum energy level increases substantially as the degree of the classical 
chaos increases such as, e.g. with increasing A.) In another test of accuracy we were able 
to exactly (machine double precision, i.e. 16 digits) reproduce the exact eigenenergies of 
the analytically solvable rectangular billiard. Some of the available eigenenergies of the 
Heller’s stadium in the literature were likewise exactly reproduced. Also, the wavefunctions 
for states as high as about 2O00, obtained by the two different methods, have been verified 
to agree within the graphical resolution. Of course we have performed many other self- 
consistent tests of accuracy of our present method, e.g. by changing many parameters of 
the method, like the interior point, the boundary points and the number of plane waves, 
which convinced us that the claimed accuracy (see above) has been actually reached for the 
highest eigenstates. 

In spite of these difficulties we are fairly confident that we have gathered all consecutive 
36 states between the estimated Weyl index 100008 and 100043, whose eigenenergies as 
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t The step size in a single search (run) was & of the mean level spacing, but we had many m m  (with different 
parameter values such ar, for example, the inrerior point) and each time an eigenvalue was captured we then 
reached the claimed accuracy. 
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Table 1. Ths eigenenergies of the corresponding eigenstates in figures 2(a). (b), 3(a), (b), 4(0) 
and (b). The E = k' are in the left-righl, topdown order. 

766265.500 766272.567 166277.395 
766 282.954 766 293.827 766 291.762 
766305.324 766 310.756 766 313.551 
766344.590 166341.851 766353.425 
766356.683 166371.761 166319.112 
166380.118 166386.997 166395.422~ 
766403.315 766413.436 766428.555 
766433.225 166440.910 166442.929 

166460.422 766460.145 766466.389 
766470.449 766476.940 766488.165 
766491.289 ~ 766502.487 ' 166503.689 
766511.361 766514.810 166521.390 

their unique labels are given in table 1. We believe that this is the first complete sample of 
consecutive high-lying eigenfunctions in the regime of mixed-type classical dynamics. It, 
is presented in the configuration space and in the phase space in figures 2(a) and (b), 3(a) 
and (b) and 4(a) and (b). Now we want to discuss this phenomenological material, which 
we call 'the gallery of eigenstad. 

3. The gallery of eigenstates 

The wavefunctions we are looking at are the eigenfunctions of the Schrodinger equation 
(Helmholtz equation): 

(2) 
where E = kZ is the eigenenergy and k the wavenumber. (So we are using units such that 
Planck's constant h = 1 and 2m = 1, where m is the mass of the point billiard particle.) 

In order to investigate the eigenstates in the quantum (Wigner) phase space we have 
first to define the classical phase space and the surface of section. The usual bounce map 
(Poincar6 map) in the Birkhoff coordinates (arclength versus tangent unit velocity vector 
component) is not suitable for our purpose, because Y vanishes on the boundary. Therefore 
we choose the surface of section defined by U = h ( w )  = 0. Our surface of section is now 
specified by the crossing point coordinate U on the abscissa versus the conjugate momentum 
equal to the tangential component of the velocity vector of length k with respect to the line 
of section U = 0. In figures I(u) and (b) we show the geometry of the largest chaotic 
component for (a) h = 0.15 and for (b )  A = 0.2 . We do not show further details of the 
KAM scenario inside the stability islands in order not to obscure the structure of the phase 
space. 

The Wigner functiont (of an eigenstate Y(u, U)) defined in the full phase space 
(U, U, pu .  p d  is 

AY + EY = 0 \y = 0 at the boundary of BA 

where we have specialized to our real Y case, and also two degrees of freedom and h = 1. 
Here q = (U, U) and p = ( p u ,  p.). In order to compare the quantum Wigner functions with 

t See, for wmplc, WIwr (1932). Takabayasi (1954). Heller (1976, 1977) and Berry (1971~). 
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-8 -6 -4 -2 0 2 4 6 8 

*10-1 " 

Figure 1. The classical SOS of the billiard system. (a )  for .I = 0.15; (b) for .I = 0.2. For the 
definitions see the text. 

, ,  

the classical Poincar6 maps on the surface of section we define the following projection of 
(3) given as 

P S O S ( ~ ,  p.1 = / dpu  W(u ,  0, pU, p d  

l /  

(4) 

which nicely reduces t!!e number of integrations by one and is equal to 

PSOS(U, p . )  = 2;; &exp(ixp,)\Y(u + i x ,  o)*(u - +, 0). (5) 

As is well known the Wigner function and its projections are not positive definite and indeed 
one typically finds small and inconvenient but nevertheless physical oscillations around zero 
which seriously obscure the main structural features. Therefore in order to compare the 
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( U )  

Figure 2. The first 12 states from the gallery of eigenstates. The eigenfunctions in configuration 
space (a) and the corresponding smoothed Wigner function &OS (b). In (a) the contours are 
plotted at eight equally spaced steps between zero and the maximum value. In (b) the contours 
SM from $ with the step size 4. The abscissa in (b) is just the coordinate on the line of section 
whilst the ordinate goes from --&E) to -&E), where E is the eigenenergy of the given state. 
Please notice that the classically allowed value of pu is within the interval [-a%. al. For 
labelling of individual plots see the text. 

classical and quantal phase-space structure it is advisable to smooth the Wigner function 
or its projections (5) by a normalized Gaussian kernel with a suitably adapted dispersion. 
Such a procedure has been introduced and used in Takahashi (1989, Leboeuf and Saracen0 
(1990), Heller (1991), Prosen and Robnik (1993c), which is a Husimi-type representation 
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Figure 2. continued. 

but the effective area of our Gaussian kemel will be smaller than 2%. To be more specific, 
we should clearly state the size of the effective action area hefi = 2 n / a  in all our phase- 
space plots, in particular, figures 2-4(b), is about & of the entire SOS area The area of 
the circle at the half maximum of our smoothing Gaussian is about nine times smaller than 

In discussing our gallery of eigenstates we shall use the following labelling of individual 
plots in figures 2-4: (nx, i, j )  identifies the plot in the ith row and jth column (just the 
standard matrix element notation) of figure nx,  where nx denotes the number of the given 
figure, so it could be 2 ( a P ( b ) .  Thus for example (3a, 3, 2) is the second plot in the third 

~ C J J .  
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Figure 3. The same as figure 2 but for the second 12 stales tiom the gallery of eigenstates. 

row of figure 3(u). 
In figures 2(u) and (b)  when the plots in 2(b) are compared with the classical plot in 

figure l(u) we immediately realize that all states should be classified as irregular (chaotic), 
because their smoothed Wigner functions are concentrated inside the classical chaotic region, 
except for two eigenstates (2a-b, 2, 1) and (2u-b, 3, 2). The former of these two regular 
eigenstates is clearly associated with the corresponding quantized classical invariant torus, 
shown in figure 6(u) together with two other regular states. This observation is based on 
the comparison of the geometries by eye and could be made quantitative by performing 
the toms quantization. In our survey of more than 100 states we have seen at least five 
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Figure 3. Continued. 

such similar states on a classical invariant torus with winding number close to three. The 
second regular state ( k - b ,  3, 2)  is also 'living' on a classical invariant toms hut we do 
not show that. As for the vast majority of chaotic states we should make the preliminary 
general comment that they are typically strongly localized inside the classically available 
chaotic region which is immediately obvious in the phase-space plots of figure 2(b) but not 
necessarily in the configuration space plots of figure 2(a). Structurally similar localized 
chaotic eigenstates are (Zn, 1, l), (2a, 1, 3) and (2a, 4, 1) which is also uncovered in 
the phase space of figure 2(b). Another set of similar structure are (k, 2, 3),  (2a, 3, 3) 
and (k, 4, 3) which are concentrated in the centre of the chaotic region. The next class 
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:a )  

Figure 4. The same as figure 2 but for the last 12 rmes from the gallery of eigenstates 

of similar states are (k, 1, 2) and (k, 3, 1). The chaotic state (2a, 2, 2) is localized 
at the border of stability islands as is seen in (26, 2, 2 )  compared with figure l(a). The 
remaining state (Za-b, 4, 2)  of figures 2(a) and (6) is strongly localized in a region where 
classical dynamics has been verified to be chaotic but exhibiting very slow diffusion. This 
quantal localization therefore has a classical origin, because, as can be easily verified, the 
quantum break time is much shorter than the classical diffusion time. The quantum break 
time &re& = R/AE is quite generally defined in terms of the (locally) mean level spacing 
AE (Chirikov etnl 1981). 
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i 
Figure 4. Continued 

In figures 3(u) and (b) we identify five regular states: three of them, namely (3n-b, 
1, 2), (3n-b, 2, 1) and (3a-b, 3, 2), are bouncing-ball-type in the region close to the 
horizontal diametral periodic orbit, all of them being associated with a classical quantized 
invariant torus: a quasiperiodic orbit on such a torus is shown in figure 6(b) and it captures 
especially the smcture of the state (3n,2, 1); the state ( 3 ~ 4 ,  1.3) is a whispering gallery 
mode (Lazutkin 1981, 1991, Keller and Rubinow 1960, Walker 1978): unfortunately, its 
oscillatory structure having 10 nodal lines (‘circles’) is not graphically resolved; the state 
(3a-b, 3, 3) is similar to (2a-b, 2, 1) and thus also ‘lives’ on the invariant torus close to 
period 3. Further we have three sets of similar chaotic states: (3a-b, 1, 1) and (3n-b, 2, 
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Figure 5. Two examples of regular stales in configuration space (0 ) .  ( e )  and in p h w  space (b) .  
( d ) .  ma energy ofthe lop one is 766536.529 and the bonom one is 766569.685. 

2); then the two centrally localized states (3a-6, 2, 3) and (3a-b, 4, 1); and finally, the 
least localized chaotic states (3a-6, 3, 1) and (3a-b, 4, 3). Notice that as the degree 
of chaoticity increases from the former to the latter in the corresponding phasespace 
plots (3b, 3, 1) and (3b, 4, 3) we observe the tendency towards more extended chaotic 
states. 

We should mention that an attempt to semiclassically quantize the most regular state (3a- 
b, 1, 3), which is a whispering gallery mode, in the Keller-Rubinow (1960) fordat ion,  
resulted in a semiclassical energy eigenvalue which differs from the exact one by about 
5% of the mean level spacing. This experience is not unexpected and conforms with 
the demonstration by Prosen and Robnik (1993a), where they argue~that the semiclassical 
methods (at the level of torus quantization or Gutzwiller theory) generally fail to predict 
the individual energy levels within a vanishing fraction of the mean level spacing even in 
the semiclassical limit when R + 0. For related developments see Boasman (1992). 

In figures 4(a) and (b) we have four examples of regular states: (4a-b, 2, 1) which 
is marginally regular (see the classical plot in figure I(a)), and (4u-b, 3, 3) which, in 
fact, is an excellent example of a regular state, ‘living’ on a thin invariant torus around 
a classical periodic orbit of period 5; (4a-b, 4, 3) which again is a bouncing-ball-type 
state around the horizontal diametxal periodic orbit, and (4a-b, 2, 3) which is an example 
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-6 -4 -2 Figurr 6. A quasiperiodic classical orbit on the invariant 
toms supporting a regular eigenstate: (2a-b, 2. 1) in (a); 
(3u-b. 2, 1) in (b) and figures 5(0)  and (b )  in (c).  a1o-1 U 

of a 'survived' whispering gallery mode. We should stress that (46, 4, 3) lives on the 
t o m  which is close to but disjoint from the toms of the bouncing ball modes. Regarding 
(4b, 2, 3) a similar comment applies. In the plots (4a-b, 3, 2) we uncover a mixed- 
type state which, however, is close to the regular state ( 4 0 4  3, 3). All the remaining 
states are chaotic but some of them are strongly localized like (4a-b, 1, I), (4a-b. 1, 
2), ( 4 ~ 4 ,  1, 3), ( 4 ~ 4 ,  2, 2) and (4a-6, 4, 1): all of them are localized in the region 
of the phase space where classical dynamics is chaotic but very slowly diffusive. The 
remaining two eigenstates (4a-b, 3, 1) and (4a-b, 4, 2) are rather extended chaotic 
states. 
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4. Further analysis of some representative eigenstates 

Apart from the states displayed in the gallery of eigenstates we have inspected many more 
(more than 100) states in configuration and in phase space. Now we want to show and 
discuss some of them, belonging to various classes. In figure 5(a) we give an example of 
a regular state which semiclassically would be described as a thin quantized torus close to 
the classical periodic orbit of period 4, as is evident in the phase-space plot of the same 
eigenstate in figure 5(b). The classical quasiperiodic orbit associated with this state is shown 
in figure 6(c). In this plot we see a signature of classical probability density explaining the 
structure in figure 5(a). However, having in mind that the de Broglie wavelength is about 
& of the horizontal diameter of the billiard, one recognizes that there is a phenomenon 
of strong destructive interference which leads to the gaps of strongly depressed probability 
density as wide as 1C-15 de Broglie wavelengths. Another example of a regular state close 
to the stable classical periodic orbit of period 2 is shown in figures 5(c) and (d):  again it 
is a quantum state ‘living’ on a thin quantized torus around the diametd periodic orbit. 

In figure 7(a) we show an interesting example of a scarred chaotic state. At first glance 
it has the appearance of a regular state but in reality it is definitely irregular but strongly 
localized in the vicinity of the supporting unstable classical periodic orbit of period 7. This 

i 

Figure 7. Two examples of eigensoies in configuration space ( a ) ,  (c) and in phut-spue (b). 
(d ) .  The energy of the lop one 1s 766718.836 and the bonom one 15 766910785. (a),  (b )  IS a 
scarred chaouc mie whereis (c), ( d )  is a mrxed-type saw. 
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is obvious when figure 7(b) is compared with figure l(a). 
In figure 7(c) we see an example of a mixed-type state in the sense that in the phase 

space (in figure 7(4) it is concentrated partially both on a regular and on a chaotic region. 
Such mixed-type states become more and more rare in the semiclassical limit when f i  + 0 or 
equivalently when E + 00. This observation which we have checked phenomenologically 
in our numerical experiments supports the correctness of Percival's (1973) classification of 
semiclassical states in regular and irregular ones. 

After our qualitative review of the variety of eigenstates we want to give some 
quantitative statistical characterization. A similar analysis of the probability amplitude 
distribution of strongly chaotic eigenstates (at X = 0.375) has been published in LR, where 
the appropriateness of the Gaussian random model for the probability amplitude distribution 
P(Y) has been confirmed. Similar results have been published in Aurich and Steiner (1993). 
P(Y) is the probability density of finding an amplitude Y inside an infinitesimal interval 
(Y, Y +dY). Of course, in regular states or strongly localized chaotic states there are large 
regions in configuration space where the probability density almost vanishes, and that gives 
rise to a delta spike in the corresponding P ( Y )  at Y = 0. Tberefore in the transition region 
of states going from localized to extended chaotic we shall see a gradual decrease of the 
central delta spike and the tendency of P ( Y )  towards the Gaussian random model 
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where according to PUSC U' = l/.A = l/(x(l + 2h2)). In figure 8 we show such a 
transition for two states from the gallery of eigensetes, namely (k, 1, 3) and (2a, 1, 2), 

I 

Figure S. The statistics of two eigenstates (4u-b, 1, 3) in (a). (c) and (204, 1, 2) in (b), 
(d). In (a), (b) we plot the amplitude probability density P(B) and in (c). ( d )  the cumulative 
disniburion f(B). The numerical data are shown as full curyes and the theoretical Gaussian as 
a broken curve. 
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Figure 9. Three examples of extended chaotic eipstaies for A = 0.2 in configuration space (a). 
(c), (e) and in phase space (b). (d), V). The energies are: 741 511.898 in (a),  (b); 741 525.937 
in (e), (d); 741549.855 in (e), (f). The Weyl index of these states is 100017, 100019 and 
100022, respctively. 

in figures 8(a)-(d), correspondingly. The plots 8(a) and (b)  are P(Y) plots obtained by 
covering the configuration space with about 250000 grid points. In figures S(c) and (d) 
we show the corresponding cumulative distributions Z(Y) = S2d.x P ( x ) .  The former of 
these two states is clearly strongly localized chaotic whereas the latter is already surprisingly 
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close to the Gaussian random model even though it is not yet a completely extended chaotic 
State. 

In order to illustrate the importance of the classical diffusion in the classical chaotic 
regions of the phase space for the quantum localization of the chaotic eigenstates we should 
remind the reader that quite generally the quantum evolution follows the classical dynamics 
up to the break time, which is by definition equal to tbreok = h/AE (Chirikov ef al 1981), 
where AE is the mean energy level spacing. After the break time the quantum diffusion 
generally stops resulting in a localization due to quantum interference effects. (The reason is 
that in the quantum time evolution of a purely bound system the discreteness of the spectrum 
of the quantum evolution operator starts to manifest itself only at times larger than the break 
time.) If the classical diffusion time is much shomr than the break time then the quantum 
evolution of an initially localized state can reach full extendedness before the break time. 
We have verified that this inequality is indeed strongly violated at A. = 0.15. Therefore, for 
this shape of the billiard domain the vast majority of chaotic states are strongly localized as 
demonstrated in the gallery of eigenstates of section 3. In order to show the approach to the 
extended chaotic regime, in figures 9(bHf) we show three quite typical chaotic eigenstates 
for the billiard at A. = 0.2 all of which are fully extended chaotic as is clearly evident when 
the phase-space plots 9(b), (d) and (f) are compared with figure l(b). Of course, we have 
verified that here the break time is now much larger than the classical diffusion time, so 
that the extendedness is reached before the break time. 
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5. Discussions and conclusions 

We believe that OUT present work reveals the structural richness of eigenfunctions in 
quantum systems deep in the semiclassical regime having mixed classical dynamics. In 
surveying more than 100 high-lying states around and above the 100000th state of even 
parity we have persuasively demonstrated that Percival's (1973) classification into regular 
and irregular states works well. While regular states are associated with some quantized 
classical invariant ton the chaotic states do not necessarily occupy the entire classically 
accessible chaotic region, but can be instead strongly localized especially in cases of 
slow classical diffusion where the break time is shorter than the classical diffusion time. 
This qualitative observation is demonstrated in sections 3 and 4, where we also show the 
approach to the uniform extendedness in chaotic eigenstates when the above-mentioned 
inequality is reversed. Thereby we have also clearly verified the validity of the principle 
of the uniform semiclassical condensation outlined in the introduction. A more quantitative 
study of this aspect would require us to describe the localization or extendedness at 
sufficiently many billiard sh,apes such that we would densely cover the transition from strong 
localization characterized by the inequality tbreaa << t d ; j j  to full extendedness characterized 
by tbrcak > td;,,. where tdi j ,  is the classical diffusion time. Unfortunately, the present 
day semiclassical methods and approximations are not yet good enough to predict (the 
eigenvalue and the structure of) the individual eigenstates, cf Prosen and Robnik (1993a). 
Nevertheless, a lot of the shucture of the eigenfunctions can be associated and qualitatively 
explained a posteriori by semiclassical quantization which thus provides the understanding 
of the various classes of generic behaviour, such as the regular and irregular states, and the 
further subclassification of the latter into localized, scarred and extended states. 

We feel that the present numerical work is a challenge to improve the semiclassical 
methods to the extent that they would have the potential of predicting the individual states. 
The first step in this direction has recently been undertaken by Gaspard and Alonso (1993) 
where they have worked out the corrections to the leading term embodied in the Gutzwiller 
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trace formula Further numerical and theoretical work should be done to improve our 
knowledge about the statistical properties of the eigenstates. For example, one could count 
the fraction of regular state% within a sufficiently large block of consecutive high-lying 
eigenstates, which according to the rigorous theory of Lkutkin (1981,1991) concerning 
the semiclassical asymptotics should be precisely equal to the fractional volume of the 
regular components in the classical phase spacet. This fact is, for example, one major 
assumption in the Berry-Robnik (1984) theory. For this to end we need to have a better 
numerical method with no missing of eigenstates ensuring significant statistics, Which at 
present we do not (ret) possess for such high-lying states, whereas~for low states (say, up to 
10000) we certainly could use, our conformal diagonalization technique (see, for example, 
Prosen and Robnik 1993c) but then we are probably not sufficiently far in the semiclassical 
limit for an unambiguous classification in regular and irregular states. This is studied 
and discussed in detail in our next paper (Li and Robnik 1994c,d), where we successfully 
separate regular and irregular energy levels, using the dynamical criterion of comparing the 
classical and quantal phase-space plots on SOS, and investigate the level statistics of the two 
level sequences separately. But there is still much more work to be done especially such 
as a more quantitative analysis on points (iHiii) raised and listed in the abstract. 
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